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Stability of a viscous liquid curtain 

By S. P. LIN 
(‘larlisoa Collrgc of Teclinology, Potsdam, N.Y. 1367ti 

(Kcwived 2 1  January 19SO arid ill reviscd foriri 28 May 1980) 

The stability of a, viscous liquid curtain falling down steadily under the influence of 
gravity is investigated. Both spatially and temporally changing disturbances are 
considered in the linear analysis. Only the spatially growing sinuous disturbances 
whose group velocity points toward upstream are unstable. The group velocity is in 
the upstream direction only when the Weber number of the curtain flow exceeds 4. 
The predicted critical Weber number agrees completely with that found experimentally 
by Brown (1961). The viscosity is shown to have the dual roles of increasing the ampli- 
fication rate as well as the damping rate of the disturbances. 

1. Introduction 
The dynamics of thin sheets of liquids has been studied extensively by G. I. Taylor 

(1959u, b ,  c). The subject is of considerable scientific and technological importance. 
Clark & Dombrowski (1972), Crapper et ul. (1973), Crapper, Dombrowski KS Pyott 
(1975) and Weihs (1978) have recently studied the disintegration of liquid sheets in 
connexion with atomization, combustion and spray coatings. Brown ( 1  961) studied 
experimentally the general behaviour of a liquid sheet in the context of curtain 
coating. 

A thin sheet of viscous liquid flowing between two vertical guide wires is an integral 
part of a process called curtain coating. It also has the potential of being used as a 
device for dynamic surface tension measurements. Some description of this process 
and its applications in various industries can be found in the references of Brown’s 
work. Brown found that his measured velocity distribution in the curtain compares 
closely with the prediction based on a nonlinear differential equation attributed to 
G. I. Taylor. He observed that the curtain will disintegrate if the flow rate is reduced 
to a certain minimum value. He also discussed curtain stability on the basis of a 
simple momentum balance applied to a stationary free edge resulting from the curtain 
breaking. However, the effect of viscosity and the dynamics of instability are not 
considered, and the mechanism at  work in curtain instability remains unclear. The 
purpose of this study is to fill in this information gap with the help of linear stability 
analysis. 
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FIGURE 1. Definition sketch. 

2. Stability analysis 
2.1. BasicJlow 

Consider the steady flow in the Newtonian liquid curtain shown in figure 1.  According 
to Brown (1961), Taylor derived the following nonlinear differential equation for the 
velocity distribution in the curtain. 

( ;ux)x+a-Ux 1 = 0, ux+vy = 0,  

where the subscripts denote differentiations, and U and V are respectively the dimen- 
sionless velocity components in the directions of the Cartesian co-ordinates ( X ,  Y ) .  
These dimensionless quantities are related to their dimensional counterparts (U,, V,) 
and (X,,Y,) by 

(U,? V,) = ( 4 d P P  ( U ,  V ) ,  (XI) YA = ( 4 P / P ) 3 g - m  Y ) ,  

where ,u is the dynamic viscosity, p the density, and the distance X ,  is measured 
from the upper edge of the curtain in the direction of the gravitational acceleration g. 
Brown found good agreements between his measured velocities and the numerical 
results obtained from (1) by Maruo (1958: Maruo’s results were cited by Brown 1961 
as private communication through G. I .  Taylor). It should be pointed out that ( 1 )  
was derived with the assumptions that the flow is essentially two dimensional and 
that the effects of surface tension as well as the normal stress variation across the 
curtain are negligible to the first-order approximation. These assumptions are borne 
out by Brown’s experiments for sufficiently thin curtains. 
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2 . 2 .  Stability equations 

The stability of the described basic flow with respect to two dimensional disturbances 
are to be investigated. Substituting the perturbed flow quantities into the Navier- 
Stokes equation, we arrive a t  the dimensionless equations 

~t + (U + U )  U ,  + uU, + (V + v) uU + vU, = -pz + (u,, + u,,)/R, 

u, + v, = 0, 

vt+ ( ~ ~ + ~ ) V , + U ~ ~ + ( V + ~ ) V , + . U W ,  = -p,+ (.u,,+v,,)/R, } ( 2 )  

where all subscripts denote partial differentials, (x ,  y )  are the Cartesian co-ordinates 
in the unit of the maximum curtain thickness do, ( U ,  V) and (u, v) are respectively the 
(x, y )  components of the primary flow velocity and the velocity perturbations in the 
unit of Uo = &/do, Q being the volumetric flow rate per unit width of the curtain, t is 
time measured in the unit of do/Go, p the pressure perturbation non-dimensionalized 
by pU& and R is the Reynolds number defined by 

R = pUOdO/p. 

I n  this study we consider only the case of a gradually varying curtain thickness. 
It is easily verified that 

Ex = (R/4F2)* U,, F = iig/gdo = Froude number. 

According to figure 5 of Brown, U, = O( 1) .  Thus, U, = SU, = - 5, < 1 if 

(B/4F2)* = (92/4V)+ ( d i / Q )  = 6 < 1. 

For the case of thin curtains such that 6 < 1, we define a slow variable [ and apply the 
method of multiple scale to write 

5 = sx, a, + a, + sa,. 
By use of the above relations and neglecting terms of O(6) as well as the nonlinear 
terms in perturbations, we reduce the first two equations in (2)  to 

(3) 1 %+ U ( 0  u, = -Pz + ( u z x  + U,,)/R, 

V t  + U ( t )  v, = - P, + (vzz + v,,)/B. 

The third equation is automatically satisfied by the stream function $ related to the 
velocity perturbations by 

Upon elimination of the pressure terms by cross differentiations, (3) can be written in 
terms of $ as: 

u=$,, v =  -$ X’ ( 4 )  

( 5 )  1 [at+uax-z(azz+a, , )  (azx+a,,)$ = 0. 
1 

Equation ( 5 )  is the governing differential equation of the linear stability problem under 
consideration. 

Let the free surfaces of the basic flow and the perturbed flow be respectively 

h h 
2 2 

y = k - ( x )  and y = + - ( x ) + y ( x , t )  = C(x,t). 
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The kinematic condition at  the free surface y = 5 requires that 

v = f;t+(U+U)<,. (6) 

The dynamic condition of the free surface, which is massless by definition, demands 
that the net force be zero a t  the free surface. Demanding the vanishing of the force 
per unit area of the free surface in the x and y directions, we have respectively 

and 

( 8 )  
2 

[ - p t X ( F + v ) , ]  - [ ( U + Z G ) ~ + ( ‘ U + ~ ) , ] ~ ; , / R T  W K  = 0, 

where K is the total surface curvature and W is the Weber number, 

Note that h, = O(S)  since Q = ( i i o U )  (doh) = consta,nt and U, = O(6) .  Neglecting 
terms of 0(6) ,  balancing out purely primary flow quantities, and expanding the 
remaining primary flow quantities in Taylor’s series about y = & i h ,  and then retain- 
ing only linear terms, we reduce the above boundary conditions a t  y = 5 to the follow- 
ing to be applied at  y = &- ah: 

(9) 

kc.,, - k x x  = 0, 

i- WT,, +P + 2kx,/R = 0, 

(10) 

(11) 

where p can be obtained from (3) in terms of @. 
Equation (5) and its boundary conditions (9)) (10) and (1 1) constitute a linear eigen- 

value problem. We consider for our solution a normal mode of travelling disturbances 

k = &Y) exp [ia(x - cq1, (12) 

where a = 2nd,/h, h is the wavelength, and c is the wave speed in the unit of Uo. We 
consider both cases of temporally and spatially growing disturbances. For the formal 
case a is real but c = cR + ic, is complex. For the latter case a = aR + ia, is the complex 
wavenumber but ac = w is the real wave frequency. Thus, temporally changing dis- 
turbances are stable or unstable depending on if c, < 0 or c, > 0, and spatially changing 
disturbances are stable or unstable depending on if a, > 0 or a, < 0. 

Substituting (12) into ( 5 ) )  we have 

[iaR(c - U) + (d2 - a’)] (d2  - a’) $ = 0, d2  = d2/dy2. 

The general solution of this equation is 

4 = Asinh(ay)+Bcosh(ay)+Csinh(My)+Dcosh(My) 

where A ,  B, C and D are integration ‘constants’ depending on <, and 

M2 = U’ - iaRc’, C‘ = c - Ti(<). 

Since the governing differential system is linear and homogeneous, we may consider 
the even and odd solutions for q5 separately. 
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2.3. Varicose waves 

The odd solution for $ corresponds to the anti-symmetric disturbances which displace 
each of the free surfaces in opposite directions. Substituting 

4 = A sinh ( a y )  + Csinh ( M y )  

into ( 4 )  and ( 3 )  and solve for p ,  we have 

p = ac'A cosh ( a y )  exp [ia(x - c t ) ] .  

The solution of (9) for 7 gives 

= c'-l[A sinh (+ah) + Csinh (+Mh)] exp [ia(x-ct)]. 

Substitution of the expressions for p and 7 and (12 )  into (10) and ( 1  1)  yields 

A[2a2 sinh (+ah)] + C [ ( M 2  + a2) sinh (+Mh)] = 0 ,  

A [c' cosh (&ah) - Wd-l a sinh (%ah) + 2R-lia cosh ($ah)] 

+ C[ZB-liM cosh (+Mh) - Wac'-l sinh (+Mh)] = 0. 

The existence of nontrivial solutions for A and C requires 

c ' ~  + c'( 2ialR) [ 1 - 2aM( M 2  + a2)-l coth (4Mh)  tanh ($ah)] 

+ Wa tanh (+ah) [ 2 a 2 / ( M 2  + a2) - 11 = 0. ( 1 3 )  

For both temporally and spatially growing disturbances of long wave-lengths, a --f 0 
near the neutral stability curve and the secular equation (13 )  can be expanded in 
powers of a as 

For the temporal case a is real and c is complex. The solution of (14)  for c gives 

(c - U ) Z  + i 4 ~ - 1 a ( ~  - U) - + m a 2  + 0 ( ~ 3 )  = 0. ( 1 4 )  

Thus ~ ~~ 

cI = - 2a/R, if & Wh - (2/R)2 > 0, 

cI = -2a/R+[(2/R)2-iWh]4a,  cR = U if +Wh-(2/R)2 < 0. 

It follows that cI  < 0 regardless of whether the wave speed relative to the fluid particle 
is zero or not. Therefore, the temporally changing varicose disturbances are damped 
with a dimensional damping rate given by 

cR = U f a[+ Wh - ( 2/R)2]i 
and 

To investigate the spatially growing disturbances of long wave-lengths, we multiply 
(14)  by a2 and identify ac with w to have 

( w  -aii)2 +i4R-l(w-aU) a2 - +Wha4+ O(a5) = 0. 

The solution of this equation in powers of small w gives the following complex wave- 
number 

w 2iw2 
u R u3 

a = = + - , + 0 ( ~ 3 ) .  
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i.e. 

Thus the spatially varying disturbances are also damped travelling waves. 

poral growth rate cI are related, as they should be, by t,he theorem of Gaster (1962) 
It is easily verified that the obtained spatial amplification factor aI and the tem- 

a 
ancI = - a1 - (aIzc,). 

3% 

Numerical solutions of (13) for finite values of a have not yielded undamped distur- 
bances for either the temporal or spatial case. 

It has been shown that the liquid curtain is stable with respect to both spatially and 
temporally varying disturbances of the varicose mode. However, there is another 
mode of disturbances associated with the even solution of $. This mode of disturbance 
displaces both free surface of the curtain in the same direction to form sinuous waves. 
It will be shown presently that, while the curtain is also stable with respect to tem- 
porally varying disturbances of the sinuous mode, i t  may become unstable owing to 
the spatially growing sinuous disturbances. 

2.4. Sinuous waves 

The analysis required to yield the secular equation for the sinuous mode is identical 
to  that for the varicose mode, except that the hyperbolic sine and tangent functions 
must be replaced, respectively, by the hyperbolic cosine and cotangent functions and 
vice versa. Thus the secular equation for the sinuous mode can be put down at  once, 
inferring directly from (1 3), 

c ’ ~  + c’(2i01/R) [l - 2 a M ( M 2  + a2)-l tanh (4Mh) coth (+ah)] 

+ Wacoth (&ah) [ 2 a 2 / ( M 2  + a2) - 11 = 0. (17) 

Consider first the temporally varying disturbances of long wave lengths such that 
01 --f 0. Expanding the above equation in powers of a, we have 

(c - U ) 2  [ 1 + $a2h2 + O(a4)] + i(c - U) [h2a3/3R + O(aS)] 

- w [ a / h + + w + o ( a 4 ) ] =  0. 

The solution of this equation for the complex wave speed gives 

C ,  = i i_+(2W/h)~[1-$(ah)2+O(a4)] ,  1 

Thus the temporally varying disturbances of long wavelengths are weakly dispersive 
and damped. The dimensional damping rate is 

Comparing (1 5) with (1 9), we find t,hat while the damping rates of varicose and sinuous 
modes of temporally varying disturbances are both linearly proportional to the kine- 
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matic viscosity, the former is independent of do but the latter is directly proportional 
to d;. Moreover, the varicose disturbances are damped more rapidly than the sinuous 
ones in the same curtain. 

The amplification rate of spatially growing disturbances can be obtained by use of 
Gaster's equation (16),  

a, = +& R-lhZIZ _+ (2  W/h)$ { 1 - $(ar2h)2}]-' 

= iag R-Ih2/(group velocity of disturbances). 

The same results can be obtained directly as was done for the case of varicose waves, 
but will not be demonstrated here. Note that a, > 0 or a, < 0 depending on if the 
disturbance group velocity is positive or negative. Thus the spatially growing distur- 
bances whose group velocity is in the downstream direction is stable but those whose 
group propagates upstream is unstable. It is seen from the expression of aI that vis- 
cosity plays the role of stabilizing agent when the curtain is stable but turns around 
and acts as a destabilizing agent when the curtain is unstable. The neutral curve 
corresponding to  zero group velocity is given by 

u-(ZW/h)t[l-~(a,,h)'] = 0. 

By use of the relation Zh = 1, this equation can be written as 

1 - (2Wh) i  [1 - #(anh)2] = 0. (20) 

Thus the neutral curve for the long wave disturbances is a parabola in the aH, W plane. 
Numerical solutions of (17) for finite an confirm the asymptotic relation (20), and 
show that the neutral stability curve is monotonic. Thus, the critical weber number 
W ,  occurs a t  a = 0, and is given by 

w, = [(2h)4Imi, = 4. 
Note the curtain thickness decreases in the direction of flow and thus h ( [ )  = d / d o  < 1, 
d being the dimensional curtain thickness. A liquid curtain is unstable if W > W,, 
since then a, < 0. This prediction agrees completely with Brown's (1961) experimental 
observations that the viscous liquid curtain is unstable if 

2T/pQ%io > 1. 

3. Conclusion 
A curtain of viscous liquid flowing between two guide wires such that 

6 = (q2/4v)* ( d i / Q )  < 1 

is shown to be stable with respect to temporally as well as spatially changing vari- 
cose disturbances. The curtain is also stable with respect to temporally varying 
sinuous disturbances but may become unstable with respect to spatially growing 
sinuous disturbances. The latter disturbances experience either an exponential 
growth or decay depending on if their group velocity is opposite to or in the direction 
of the basic flow. The group velocityis in the upstream direction onlywhen the Weber 
number exceeds 4. The predicted critical Weber number agrees completely with that 
experimentally found by Brown. It is implicit in Gaster's equation ( l6) ,  that if the 
group velocity is opposite to the basic flow direction, ( - x direction), then the temporal 
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and the spatial formulations of the linear stability problem will lead to opposite 
conclusions. The present analysis for the case of sinuous disturbances offer an excellent 
example. The same equation also implies that  both temporal and spatial formulations 
will lead to the same conclusion on the stability criteria if the group velocity is in the 
dirertion of the flow. Our analysis for varicose disturbances is a good example. Another 
example is furnished by the stability problem of a liquid laycr flow down an inclined 
plane. The equivalence of the temporal and spatial formulations for this problem has 
been discussed recently by Lin (1975) and Krantz (1975). 

It should be pointed out that we neglected terms of O(S) in the analysis. Thus our 
results based on the quasi-parallel flow approximatiorl are valid first order solutions 
which predict the first order effects in a liquid curtain with sufficient accuracy only 
if its thickness is so thin that 6 < 1. For such a liquid curtain the omitted higher order 
terms in the linear analysis may well be less significant than the neglected nonlinear 
effects. It will be of interest to  know if the conclusions on stability reached by the 
present normal mode analysis will be altered by the findings from the corresponding 
stability analysis in the frame work of initial value problems. Although more general 
disturbances which can be constructed from normal modes by Fourier superposition 
will give the same stability criteria, the disturbance corresponding to  any continuous 
spectrum in the initial value problem may not. However, based on the good agreement 
between our theory and known experiments, we conjecture that the transient part of 
the solution to the initial value problem will be damped and the normal mode solution 
recovered. 

It is seen from (18) that the speed of sinuous disturbances decreases as the curtain 
thickness increases. Therefore the disturbances which propagate upstream will ex- 
perience overturning when they are forced to overtake the waves in front of them, 
since the curtain thickness increases in the upstream direction. It is very unlikely that 
one will find supercritical stability in the nonlinear analysis. However, there is an 
evidence of sub-critical instability. Brown observed that if the disturbance amplitude 
is so large as to cause the two free surfaces t o  meet the curtain will break, even if 
W < W,, to form an inverted I/'-shaped free edge. G. I. Taylor (1959b) in fact demon- 
strated that M{ = & from a momentum balance for an element of such a free edge in a 
broken sheet of an iiiviscid liquid. 

Thanks are due to Dr 0. T. Bloomer and Dr M. G.  Antoniades for useful discussions. 
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